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Motivation
◎ Deluge of misleading health news over social 

media
○ More than 50% of the top-20 Facebook stories 

containing “cancer” in headline were False. [Katie 
Forster 2017]

○ “Pricking someone’s fingers and ears during a stroke 
can save their life” - went viral. [Daniel Funke 2019]

◎ Click-through-rate (CTR) -based pay policies 
intensify the phenomenon

○ Bots in social networks significantly promote 
unsubstantiated health-related claims.

◎ Alarming for general people
○ 35% of U.S. adults have gone online to self-diagnose a 

medical condition.[Michelle Castillo 2013]



Motivation

◎ Health misinformation can be critical
○ Fake news about vaccine caused measles outbreak in 

Europe [Muiris Houston 2018].
○ Can damage the credibility of the health-care providers 

and create a lack of trust in taking medicine, food, and 
vaccines.

◎ Health misinformation is a relatively unexplored area
○ Lack of reliable entities to debunk health 

misinformation.
○ Very few computational approaches with limited 

success.
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Structural Analysis

◎ Headline is the most important part of a news article.
○ Only 4 out of 10 Americans read beyond the headline. [Breaux, C. 

(2015)]

◎ A longer headline receives more click than a short line 
does. [Breaux, C. (2015)]

◎ Unreliable outlets (12.13 words/headline) use longer 
headlines than reliable outlets. (8.56 words/headline)

◎ An unreliable outlet’s headline has a higher chance of 
receiving more clicks or attention than a reliable outlet’s 
headline.



Structural Analysis

◎ Examined the clickbaityness of the headlines.
○ Used two supervised clickbait detection model (Cohen’s κ = 0.44)
○ Considered headline as a clickbait if both models labeled it as clickbait.

◎ Unreliable outlets (40.03%) practice more clickbait than reliable 
outlets (27.29%).

◎ Unreliable outlets use demonstrative adjective and numbers 
significantly more than the reliable outlets.



Topical Analysis

◎ Used Latent Dirichlet Allocation 
(k=3).

◎ Representations are different for 
the common topic, e.g.  “Cancer”
○ In reliable outlets, the topic is 

associated with research studies, 
facts, and references.

○ In unreliable outlets, the 
discussions are on an 
unsubstantiated claim - how 
vaccines put people under autism 
and cancer risk.



Topical Analysis

◎ Identified topic by Google 
Cloud NLP API.

◎ For reliable, the distribution is 
significantly dominated by 
health condition.

◎ Percentages of nutrition and 
food are noticeable for 
unreliable outlets.

◎ Reliable and Unreliable outlets 
cover different topics.

○ Only 4 of the 10 categories are 
common.



Semantic Analysis

◎ Use of quotations and links indicates 
credibility of an article [Sundar, S. S. 
(1998), De Maeyer, J. (2012)].

◎ Used the Stanford QuoteAnnotator 
to identify the quotations from a 
news article.

◎ Reliable outlets (3/article) use more 
number of quotes than unreliable 
outlets (1/article).



Semantic Analysis

◎ On average, a reliable outlet 
sourced article contains 8.4 
hyperlinks and an unreliable 
outlet sourced article contains 
6.8 hyperlinks.

◎ Articles from reliable outlets 
(median 8)contain more 
hyperlinks than the articles 
from unreliable outlets 
(median 2).



“
Source Classification



Feature Importance

◎ Word (W): Took 5, 000 most 
frequent n-gram (n=1, 2)

◎  Extracted Features (EF): 10 
features extracted from the 
analysis.

◎ Four out of 10 extracted 
features make to the top-20 
most important features 
including the top spot.



Classification

◎ Performed 5-fold 
cross-validation using several 
classical machine learning 
models.

◎ Linear Support Vector classifier 
outperformed others.

◎ Experimented with three 
different combinations of 
feature sets.

◎ Combination of both feature sets 
improves overall performance.



Conclusion and Future Work

◎ Analyzed structural, topical, and semantic differences between articles 
from reliable and unreliable outlets.

◎ Identified some patterns that can potentially help classify articles of 
reliable outlets from unreliable outlets.

◎ Our classification model showed better performance with the inclusion 
of these patterns.

◎ In future, we want to incorporate the videos, cited experts, users’ 
reaction and other metadata in combating health disinformation.
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