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Doctor Blows Whistle on Flu Shot: ‘It's Designed to

Spread Cancer’
gl 2018 by Eoward Morgan
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SPECIAL: TODAY'S DIET TIP: 1 TRICK
TO LOSE YOUR "BELLY"™ THIS SUMMER

Dr John Bergman ssues warming to the public of ‘flu panic’. Dr. John Bergman says the flu

vaccong is laced with cancer-causing ingredents. A top doctor has gone on the record 1o biow
the whistle n a video statement and reveal that flu vaccnes have been laced with “cancer-

causing ingredients.”

“cancer” 1n headline were False.

Deluge of misleading health news over social media

Health misinformation can be critical

Health misinformation is a relatively unexplored area

= Lack of reliable entities to debunk health misinformation.
= Very few computational approaches with limited success.

Structural Analysis

= More than 50% of the top-20 Facebook stories containing

= Fake news about vaccine caused measles outbreak in Europe.

= Continuously produced and propagated by unreliable outlets.
= Reach to a broader audiences through Social networking sites.

 Erroneous health news can cause hazardous health condition.

= Media outlets use longer headline to get more attention 3.

= Unreliable outlets (12.13 words/headline) use longer
headlines than reliable outlets (8.56 words/headline).

= Unreliable outlets (40.03%) practice more clickbait than
reliable outlets (27.29%).

= Unreliable outlets use demonstrative adjective and numbers
significantly more than the reliable outlets.
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= Spoil the credibility of the health-care providers & medicines.

Topical Analysis

Problem Formulation
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= Develop a health-oriented news corpus.
= Analyze the corpus to identify discriminating features.

health news from reliable news.

= Used Google Cloud NLP & Latent Dirichlet Allocation (k=3).
= Reliable & unreliable outlets cover different health topics.
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Topic Modeling (RT denotes Reliable and UT denotes Unreliable Topic)

Feature Extraction

= Word (W): Took 5,000 most frequent n-grams (n = 1,2)

= Extracted Features (EF): 10 features extracted from the analysis.

= Four out of 10 extracted features make to the top-20 most
important features including the top spot.
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Top 20 most important features with feature importance

Classitication

= Performed 5-fold cross-validation using several -classical
machine learning models

= Linear Support Vector classifier outperformed others.

= Experimented with three different combinations of feature sets.

= Combination of both feature sets improves overall performance.

= Build a classifier to distinguish unreliable media sourced

Features Labels Precision Recall F-1
Word (W) Unreliable 0.94 0.92 0.93
Reliable 0.96 0.97 0.97
Macro-Avg 0.95 0.95 0.95
Extracted Features Unreliable 0.76 0.47 0.58
(EF) Reliable 0.78 0.93 0.85
Macro-Avg 0.77 0.70 0.72
W + EF Unreliable 0.95 0.93 0.94
Reliable 0.97 0.97 0.97
Macro-Avg 0.96 0.95 0.96

Semantic Analysis

Data Collection
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« Used Python Package to collect Article
Content

« 20,047 articles from reliable and 15,017
articles from unreliable outlets ‘

Most
Circulated

« Identified Topic by Google Cloud NLP API

Final Corpus /

« Filtered out articles not related to health } \

M
) 4

omm

= Use of quotations & links indicates credibility of an article %-2.
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